
Joint Inference of States, Robot Knowledge, and Human (False-)Beliefs

Tao Yuan1 Hangxin Liu1 Lifeng Fan1 Zilong Zheng1 Tao Gao1,3 Yixin Zhu1,2 Song-Chun Zhu1,2

Abstract— Aiming to understand how human (false-)belief—
a core socio-cognitive ability—would affect human interactions
with robots, this paper proposes to adopt a graphical model to
unify the representation of object states, robot knowledge, and
human (false-)beliefs. Specifically, a parse graph (pg) is learned
from a single-view spatiotemporal parsing by aggregating vari-
ous object states along the time; such a learned representation is
accumulated as the robot’s knowledge. An inference algorithm
is derived to fuse individual pg from all robots across multi-
views into a joint pg, which affords more effective reasoning
and inference capability to overcome the errors originated from
a single view. In the experiments, through the joint inference
over pgs, the system correctly recognizes human (false-)belief
in various settings and achieves better cross-view accuracy on
a challenging small object tracking dataset.

I. INTRODUCTION

The seminal Sally-Anne [1] study has spawned a vast
research literature in developmental psychology regard-
ing Theory of Mind (ToM); in particular, human’s socio-
cognition in understanding false-belief —the ability to un-
derstand other’s belief about the world may contrast with
the true reality. A cartoon version of the Sally-Anne test is
shown in the left of Fig. 1: Sally puts her marble in the box
and left. While Sally is out, Anne moves the marble from
the box to a basket. The test would ask a human participant
where Sally would look for her marble when she is back.
In this experiment, the marble would still be inside the box
according to Sally’s false-belief, even though the marble is
actually inside the basket. To answer this question correctly,
an agent should understand and disentangle the object state
(observation from the current frame), the (accumulated)
knowledge, the belief of other agents, the ground-truth/reality
of the world, and importantly, the concept of false-belief.

The prior study suggests that at the age of 4 years old,
children begin to develop the capability to understand false-
belief [2]. Such abilities to ascribe the mental belief to the
human mind, to differentiate belief from the physical reality,
and even to recognize false-belief and perform psychological
reasoning, is a significant milestone in the acquisition of
ToM [3], [4]. Such evidence emerged from developmental
psychology in the past few decades call for integrating such
socio-cognitive aspects into a modern social robot [5].

In fact, false-belief is not rare in our daily life. Two
examples are depicted in the middle and the right of Fig. 1:
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Fig. 1: Left: Illustration of the classic Sally-Anne test [1]. Middle
and Right: Two different types of false-belief scenarios in our
dataset: belief test and helping test.

(i) Where does Bob think his cup1 is after Charlie put cup2
(visually identical to cup1) on the table while Dave took cup1
away? (ii) Which milk box should Alice give to Bob if she
wants to help? The one closer to Bob but empty, or the one
further to Bob but full? Although such false-belief tasks are
primal examples for social and cognitive intelligence, current
state-of-the-art intelligent systems are still facing challenges
in acquiring such a capability in the wild with noisy visual
input (see Related Work for discussion).

One fundamental challenge is the lack of proper repre-
sentation for modeling the false-belief from visual input; it
has to be able to handle the heterogeneous information of a
system’s current states, its accumulated knowledge, agent’s
belief, and the reality/ground-truth of the world. Without
a unified representation, the information across all these
domains cannot be easily interpreted, and the cross-domain
reasoning of the events is infeasible.

Largely due to this difficulty, prior work that takes noisy
sensory input can only solve a sub-problem in understand-
ing false-belief. For instance, sensor fusion techniques are
mainly used to obtain better state estimation by filtering
the measurements from multiple sensors [6]. Similarly, the
Multiple View Tracking (MVT) in computer vision is de-
signed to combine the observations across camera views
to better track an object. Visual cognitive reasoning (e.g.,
human intention/attention predictions [7], [8], [9], [10]) only
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targets to model human mental states. These three lines of
work are all crucial ingredients but developed independently;
a unified cross-domain representation is still largely missing.

In order to endow such an ability to understand the concept
of false-belief to a robot system from noisy visual inputs,
this paper proposes to use a graphical model represented by
a parse graph (pg) [11] to serve as the unified representation
of a robot’s knowledge structure, fused knowledge across
all robots, and the (false-)beliefs of human agents. A pg is
learned from the spatiotemporal transition of humans and
objects in the scene perceived by a robot. A joint pg can
be induced by merging and fusing the individual pg from
each robot to overcome the errors originated from a single
view. In particular, our system enables the following three
capabilities with increasing depth in cognition:
1) Tracking small objects with occlusions across different

views. Human-made objects in an indoor environment
(e.g., cups) are oftentimes small with a similar appear-
ance. Tracking such objects could be challenging due to
occlusions with frequent human interactions. The pro-
posed method can address the challenging multi-view
multi-object tracking problem by properly maintaining
cross-view object states using the unified representation.

2) Inferring human beliefs. The state of an object normally
does not change unless a human interacts with it; this
observation shares a similar spirit in human cognition
known as object permanence [12]. By identifying the
interactions between humans and objects, our system also
supports the high-level cognitive capability; e.g., knowing
which object is interacted with which person, whether a
person knows the state of the object has been changed.

3) Assisting agents by recognizing false-belief. Giving the
above object tracking and cognitive reasoning of human
beliefs, the proposed algorithm can further infer whether
and why the person has false-belief, thereby to better
assist the person given a specific context.

A. Related Work

Robot ToM, aiming at understanding human beliefs and
intents, receives increasing research attentions in human-
robot interaction and collaboration [13], [14]. Several false-
belief tasks akin to the classic Sally-Anne test were designed.
For instance, Warnier et al. [15] introduced a belief manage-
ment algorithm, and the reasoning capability is subsequently
endowed to a robot to pass the Sally-Anne test [16] suc-
cessfully. More sophisticated human-robot collaboration is
achieved by maintaining a human partner’s mental state [17].
More formally, Dynamic Epistemic Logic is introduced to
represent and reason about belief and false-belief [18], [19].
These successes are, however, limited to the symbolic-
based belief representations, requiring handcrafted variables
and structures, making the logic-based reasoning approaches
brittle in practice to handle noises and errors. To address this
deficiency, this paper utilizes a unified representation by pg,
a probabilistic graphical model that has been successfully
applied to various robotics tasks, e.g., [20], [21], [22]; it
accumulates the observations over time to form a knowledge
graph and robustly handles noisy visual input.

Multi-view Visual Analysis is widely applied to 3D
reconstruction [23], object detection [24], [25], cross-view
tracking [26], [27], and joint parsing [28]. Built on top

of these modules, Multiple Object Tracking (MOT) usually
utilizes tracking-by-detection techniques [29], [30], [31].
This line of work primarily focuses on combining different
camera views to obtain a more comprehensive tracking,
lacking the understanding of human (false-)belief.

Visual Cognitive Reasoning is an emerging field in
computer vision. Related work includes recovering incom-
plete trajectories [32], learning utility and affordance [33],
inferring human intention and attention [9], [10], etc. As
to understanding (false-)belief, despite many psychological
experiments and theoretical analysis [34], [35], [36], [37],
very few attempts have been made to solve (false-)belief with
visual input; handcrafted constraints are usually required
for specific problems in prior work. In contrast, this paper
utilizes a unified representation across different domains with
heterogeneous information to model human mental states.

B. Contribution
This paper makes three contributions:

1) We adopt a unified graphical model pg to represent and
maintain heterogeneous knowledge about object states,
robot knowledge, and human beliefs.

2) On top of the unified representation, we propose an
inference algorithm to merge individual pg from different
domains across time and views into a joint pg, supporting
human belief inference from multi-view to overcome the
noises and errors originated from a single view.

3) With the inferred pgs, our system can keep track of the
state and location of each object, infer human beliefs, and
further discover false-belief to better assist human.

C. Overview
The remainder of the paper is organized as follows. Sec-

tions II and III describe the representation and the detailed
probabilistic formulation, respectively. We demonstrate the
efficacy of the proposed method in Section IV and conclude
the paper with discussions in Section V.

II. REPRESENTATION

In this work, we use the parse graph (pg)—a unified
graphical model [11]—to represent (i) the location of each
agent and object, (ii) the interactions between agents and
objects, (iii) the beliefs of agents, and (iv) the attributes and
states of objects; see Fig. 2 for an example. Specifically, three
different types of pgs are utilized:
• Robot pg, shown as blue circles, maintains the knowledge

structure of an individual robot, which is extracted from
its visual observation—an image. It also contains attributes
that are grounded to the observed agents and objects.

• Belief pg, shown as red diamonds, represents the inferred
human knowledge by each robot. Each robot maintains the
parse graph for each agent it observed.

• Joint pg fuses all the information and views across a set
of distributed robots.
Notations and Definitions: The input of our system

can be represented by M synchronized video sequences I =
{Ik=1..M

t=1..T } with length T captured from M robots. Formally,
a scene R is expressed as

R= {(Ot, Ht) : t= 1, 2, . . . , T},
Ot = {oit : i= 1, 2, . . . , No},
Ht = {hjt : j= 1, 2, . . . , Nh},

(1)

5973



Q: Where is Tim’s cup now?

A:

Q: Where does Tim think his cup is?

A:

p̄g

Robot parse graphRobot’s view Joint parse graph Belief parse graph
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Fig. 2: System overview. The robot pgs are obtained from each individual robot’s view. The joint pg can be obtained by fusing all robots’
pgs. The belief pgs can be inferred from the joint pg. All the pgs are optimized simultaneously under the proposed joint parsing framework
to enable the queries about the object states and human (false-)beliefs.

where Ot and Ht denote the set of all the tracked objects
(No objects in total) and the set of all the tracked agents (Nh

agents in total) at time t, respectively.
Object oit is represented by a tuple: bounding box location

bit, appearance feature φit, states sit, and attributes ait,

oit = (bit, φ
i
t, s

i
t, a

i
t), (2)

where sit is an index function: sit = j, j 6= 0 indicates the
object oi is held by the agent hj at time t, and sit = 0 means
it is not held by any agent at time t.

The agent hjt is represented by its body key-point position
κjt and appearance feature φjt

hjt = (κjt , φ
j
t ). (3)

Robot Parse Graph is formally expressed as

p̃gkt = {(oit, h
j
t ) : oit, h

j
t ∈ Ikt }, (4)

where Ikt is the area where kth robot can observe at time t.
Belief Parse Graph is formally expressed as

p̄gk,jt = {oit′ : oit′ ∈ Ikt′}, (5)

where p̄gk,jt represents the inferred belief of agent hj under
robot k’s view; t′ is the last time that the robot k observes
the human hj . We assume that the agent hj only keeps the
objects s/he observed last time in this area in mind, which
satisfies the Principle of Inertia: an agent’s belief is preserved
over time unless the agent gets information to the contrary.

Joint Parse Graph keeps track of all the information across
a set of distributed robots, formally expressed as

pgt = {(oit, h
j
t : i= 1, 2, ..., No; j= 1, 2, ..., Nh)}. (6)

Objective: The objective of the system is to jointly
infer all the parse graphs PG= {pg, p̃g, p̄g} so that it can
(i) track all the agents and objects across scenes at any time
by fusing the information collected by a distributed system,
and (ii) infer human (false-)beliefs to provide assistance.

III. PROBABILISTIC FORMULATION

We formulate the joint parsing problem as a maximizing
a posterior (MAP) inference problem

PG∗= arg max
PG

p(PG|I) = arg max
PG

p(I|PG) ·p(PG), (7)

where p(PG) is the prior, and p(I|PG) is the likelihood.

A. Prior
The prior term p(PG) models the compatibility of the

robot pgs and the joint pg, and the compatibility of the joint
pg over time. Formally, we can decompose the prior as

p(PG) = p(pg1)
T−1∏
t=1

p(pgt+1|pgt)
M∏
k=1

T∏
t=1

p(p̃gkt |pgt), (8)

where the first term p(pgt+1|pgt) is the transition probability
of the joint pg over time, further decomposed as

p(pgt+1|pgt) =
1

Z
exp{−E(pgt+1|pgt)}, (9)

E(pgt+1|pgt) =

No∑
i=1

ELo
(bit+1, b

i
t, s

i
t)+EST (sit+1, s

i
t)+

Nh∑
j=1

ELh
(κjt+1, κ

j
t ). (10)

The second term p(p̃gkt |pgt) is the probability which
models the compatibility of individual pgs and the joint pg.
Its energy can be decomposed into three energy terms

p(p̃gkt |pgt) =
1

Z
exp{−E(pgt, p̃g

k
t )}

=
1

Z
exp{−EA(pgt, p̃g

k
t )−ES(pgt, p̃g

k
t )−EAttr(pgt, p̃g

k
t )}. (11)

Below, we detail the above six energy terms E(·) in
Eqs. (10) and (11).

Motion Consistency: The term EL measures the mo-
tion consistency of objects and agents in time, defined as

ELo
(bit+1, b

i
t, s

i
t) =

{
δ(D(bit+1, b

i
t)>τ)) if sit = 0

δ(D(κjt+1, κ
j
t )>τ)) if sit = j

ELh
(κjt+1, κ

j
t ) = δ(D(κjt+1, κ

j
t )>τ)),

(12)

where D is the distance between two bounding boxes or
human poses, τ is the speed threshold, and δ is the indicator
function. If an object i is held by an agent j, we use the
agent’s location to calculate EL of the object.

State Transition Consistency: The term EST is the
state transition energy, defined as

EST (sit+1, s
i
t) =− log p(δ(sit+1 = 0)|δ(sit = 0)), (13)

where the state transition probability p(δ(sit+1 = 0)|δ(sit =
0)) is learned from the training data.

Appearance Consistency: EA measures appearance
consistency. In robot pgs, the appearance feature vector φ
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(a) Put down a cup (b) Pick up a cup (c) Move a cup

(d) Carry a cup to another room (e) Swap two cups
Fig. 3: Examples of human-object interactions in the cross-view subset of the proposed dataset. Each scenario contains at least one kind
of false-belief test or helping test recorded with four robot camera views.

is extracted by a deep person re-identification network [38].
In the joint pg, the feature vector is calculated by the mean
pooling of all features for the same entity from all robot pgs

EA(pgt, p̃gt) =
∑

e∈Ot∪Ht

||φet −φẽt ||2. (14)

Spatial Consistency: Each object and agent in the
robot’s 2D view should also have a corresponding 3D
location in the real-world coordinate system, and such cor-
respondence should remain consistent when projected any
points from the robot image plane back to the real-world
coordinate. Thus, spatial consistency is defined as

ES(pgt, p̃gt) =
∑

e∈Ot∪Ht

||Λe
t −f(Λẽ

t )||2, (15)

where Λ is the 3D positions in the real-world coordinate,
and f is the transformation function that projects the points
from the robot’s 2D view to the 3D real-world coordinate.

Attribute Consistency: Attributes of each entity should
remain the same across time and viewpoints. Such an at-
tribute consistency is defined by the term EAttr

EAttr(pgt, p̃gt) =

No∑
i=1

δ(ait 6= ãit). (16)

B. Likelihood
The likelihood term p(I|PG) models how well each robot

can ground the knowledge in its pg to the visual data it
captures. Formally, the likelihood is defined as

p(I|PG) =
M∏
k=1

T∏
t=1

p(Ikt |p̃gkt ). (17)

The energy of term p(Ikt |p̃gkt ) can be further decomposed as

p(Ikt |p̃gkt ) =
1

Z
exp{−E(Ikt |p̃gkt )}, (18)

E(Ikt |p̃gkt ) =

No∑
i=1

ED(bit, φ
i
t)+EC(bit, φ

i
t, a

i
t)+

Nh∑
j=1

ED(pjt , φ
j
t ), (19)

where ED can be calculated by the score of object detection
or human pose estimation, and EC can be obtained by the
object attributes classification scores.

C. Inference
Given the above probabilistic formulation, we can infer

the best {pg∗, p̃g∗} by an MAP estimate. It can be solved
by two steps: (i) Each robot individually processes the
visual input; the output (e.g., object detection, and human
pose estimation) can be aggregated as the proposals for the

second step. (ii) The MAP estimate can be transformed to
an assignment problem given the proposals, solvable using
the Kuhn-Munkres algorithm [39], [40] in polynomial time.

Based on Eq. (5), robot k can generate belief parse graphs
p̄gk,j for agent j after obtaining the robot graphs p̃gk.

IV. EXPERIMENT

We evaluate the proposed method in two setups: cross-
view object tracking and human (false-)belief understanding.
The first experiment evaluates the accuracy of object local-
ization using the proposed inference algorithms, focusing on
the robot parse graphs p̃g and the joint parse graph pg. The
second experiment evaluates the inference of the belief parse
graphs p̄g, i.e., human beliefs regarding the object states
(e.g., locations) in both single-view and multi-view settings.

A. Dataset

The dataset includes two subsets, a multi-view subset
and a single-view subset. Ground-truth tracking results of
objects and agents, and states and attributes of objects are
all annotated for evaluation purpose.
• The single-view subset includes 5 different false-belief

scenarios with 12532 frames. Each scenario contains at
least one kind of false-belief test or helping test. In this
subset, objects are not limited to the cups.

• The multi-view subset consists of 8 scenes, each shot with
4 robot camera views, making a total number of 72720
frames. Each scenario contains at least one kind of false-
belief test. The objects in each scene are, however, limited
to the cups: 12-16 different cups made with 3 different
materials (plastic, paper, and ceramic) and 4 colors (red,
blue, white, and black). In each scene, three agents interact
with cups by performing actions depicted in Fig. 3.

B. Implementation Details

Below, we detail the implementations of the system.
• Object detection: we use the RetinaNet model [41] pre-

trained on the MS COCO dataset [42]. We keep all the
bounding boxes with a score higher than the threshold 0.2,
which serve as the proposals for object detection.

• Human pose estimation: we apply the AlphaPose [43].
• Object attribute classification: A VGG16 network [44] was

trained to classify the color and the material of the objects.
• Appearance feature: A deep person re-id model [38] was

fine-tuned on the training set.
• Due to the lack of multi-view in the single-view setting, we

locate the object that an agent plan to interact by simply
finding the object closest to the direction the agent points
at according to the key points on the arm.
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Room 1

Room 2

(a) Observation t0 (b) Observation t1 (c) Observation t2 (d) Observation t3 (e) Observation t4
Fig. 4: A sample result in Experiment 1. Two rows show examples of synchronized visual inputs in different rooms. Two red cups marked
by green and yellow bounding boxes are highlighted. At time t0, agent H00 put a red cup C00 in Room 1. At t1, agent H01 put another
red cup C01 in Room 1. At t3, agent H02 took away cup C00 and put it in Room 2 at t4. Our system can robustly perform such a
complex multi-room multi-view tracking and reason about agent’s belief. For instance, at t4, the tracking system knows that the cup C00

appeared at t0 is in fact in Room 2 and inferred that human H00 thinks the cup is still in Room 1.

C. Experiment 1: Cross-view Object Localization
To test the overall cross-view tracking performance, 2000

queries are randomly sampled from the ground-truth tracks.
Each query q can be formally described as

q= (k, t, b, tq), (20)

where the tuple (k, t, b) indicates the object shown in robot
k’s view located in bounding box b at time t. Such a form of
the query can be very flexible. For instance, if we ask about
the location of that object at time tq , the system should return
an answer in the form of (ka, ba), meaning that the system
predicts the object is shown in robot ka’s view at ba.

The system generates the answer in two steps. It firstly
locates the query of the object by searching the object i in
p̃gkt with the smallest distance to the bounding box b. Then
it returns the location bitq from p̃gk

′

tq . The accuracy of model
M can be calculated as

acc(M) =
1

Nq

Nq∑
i=1

δ(IoU(bigt, b
i
a)>ξ) ·δ(kgt = ka), (21)

where Nq is the number of queries, bgt is the ground-truth
bounding box, and ba is the inferred bounding box returned
by model M . We calculate the Intersection over Union (IoU)
between the answer and the ground-truth bounding boxes; the
answer is correct if and only if the answer predicts the right
view and the IoU is larger than ξ= 0.5.

Table I shows the ablative study by turning on and off
the joint parsing component that models human interactions,
i.e., whether the model parses and tracks objects by reasoning
about the interaction with agents. “# interactions” means how
many times the object was interacted by agents. The result
shows that our system achieves an overall 88% accuracy.
Even without parsing humans, our system still possesses the
ability to reason about object location by maintaining other
consistencies, such as spatial consistency and appearance
consistency. However, its performance drops significantly if
the object was moved to different rooms. Figure 4 shows
some qualitative results.

TABLE I: Accuracy of cross-view object tracking
# interactions 0 1 2 3 Overall

Parsing w/o humans acc. 0.98 0.82 0.78 0.75 0.82
Joint parsing acc. 0.98 0.86 0.85 0.82 0.88

D. Experiment 2: (False-)Belief Inference
In this experiment, we evaluate the performance of belief

and false-belief inference, i.e., whether an agent’s belief pg
is the same as the true object states. The evaluations were
conducted on both single-view and multi-view scenarios.

Multi-view: We collected 200 queries with ground-
truth annotations that focus on the Sally-Anne false belief
task. The query is defined as

q= (ko, to, bo, kh, th, bh, tq), (22)

where first three terms (ko, to, bo) define the objects in robot
ko’s view located at bo at time to. Similarly, another three
terms (kh, th, bh) define an agent in robot kh’s view located
at bh at time th. The question is: where does the agent
(kh, th, bh) think the object (ko, to, bo) is at time tq?

Our system generates the answer in three steps: (i) search
for the object i and the agent j in robot parse graphs p̃gko

to and
p̃gkh

th
, (ii) retrieve all the belief parse graphs p̄gk

′,j
tq at time

tq to find the object i’s location b̄itq in human j’s belief, and
(iii) find an object i′ in robot parse graph, which has the
same attributes as i’s and has smallest distance to b̄itq . The
system finally returns i′’s location bi

′

tq as the answer.
Since there is no publicly available code on this task, we

compare our inference algorithm with a random baseline
model as the reference for future benchmark; it simply
returns an object with the same attributes as the query
object at tq . The result shows that our system achieves 81%
accuracy, while the baseline model only has 39% accuracy.

Single-view: We collected a total of 100 queries, in-
cluding two types of belief inference tasks: the Sally-Anne
false-belief task and the helping task, as shown in Fig. 1.
The queries have two forms

q= (to, bo, bh, tq), and q= (bh, tq), (23)

indicating two different types of questions: (i) where does
the agent bh think the object (to, bo) is at time tq? (ii)

TABLE II: Accuracy of belief queries on single view subset
True Belief False-Belief Overall

Joint parsing acc. 0.94 0.93 0.94
Random guessing acc. 0.45 0.53 0.46
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w/ false-belief

w/o false-belief

(a) Observation t0 (b) Observation t1 (c) Observation t2 (d) Observation t3 (e) Prediction
Fig. 5: Two sample results of the Sally-Anne false-belief task in Experiment 2. (Top) with false-belief. (Bottom) Without false-belief. At
time t0, the first person H00 put the cup noodle (C00) into the microwave and leaves. The second person H01 take out the cup noodle
C00 from the microwave at t1. At time t2, H01 put his own cup noodle C01 in the microwave and left. When H00 returns to the room
at t3, our system is able to answer: where does the first person H00 think the cup noodle C00 is. It can successfully predict the person
in the bottom row will not have the false-belief due to the different color attributes of the cups.

(a) Observation t0 (b) Observation t1 (c) Prediction (d) Ground-truth
Fig. 6: Two sample results of the helping task in Experiment 2. (Top) At time t0, the second person (H01) enters the room and empties
the box C01. Question: which box should the first person (H00) give to the third person (H02) if the first person (H00) wants to help at
t1? Answer returned by the system correctly infers that H02 has a false-belief, and H00 should give another box (C00) to H02, rather
than the C01 his is reaching for. (Bottom) Since the person H02 observes the entire process, there is no false-belief; in this case, H02

reaches for C01 is to throw it away.

Which object will you give to the agent (tq, bh) at time tq if
you would like to help? For the first type of questions, i.e.,
the Sally-Anne false-belief task, similar to the multi-view
setting, the system should return the object bounding box as
the answer. For the second type of question, i.e., the helping
task, the system first infers whether the agent has false-belief.
If not, the system returns the object the person wants to
interact based on their current pose; otherwise, the system
returns another suitable object closest to them. Qualitative
results are shown in Figs. 5 and 6, and quantitative results
are provided in Table II.

V. CONCLUSION AND DISCUSSIONS

In this paper, we describe the idea of using pg as a unified
representation for tracking object states, accumulating robot
knowledge, and reasoning about human (false-)beliefs. Based
on the spatiotemporal information observed from multiple
camera views of one or more robots, robot pg and belief
pg are induced and merged to a joint pg to overcome the
possible errors originated from a single view. With such a
representation, a joint inference algorithm is proposed, which
possesses the capabilities of tracking small occluded objects
across different views and inferring human (false-)beliefs.
In experiments, we first demonstrate that the joint inference
over the merged pg produced better tracking accuracy. We

further evaluate the inference on human true- and false-belief
regarding objects’ locations by jointly parsing the pgs. The
high accuracy demonstrates that our system is capable of
modeling and understanding human (false-)beliefs, with the
potential of helping capability as demonstrated in develop-
mental psychology.

ToM and Sally-Anne test are interesting and difficult
problems in the area of social robotics. For a service robot to
interact with humans in an intuitive manner, it must be able to
maintain a model of the belief states of the agents it interacts
with. We hope the proposed method using a graphical model
has demonstrated a different perspective compared to prior
methods in terms of flexibility and generalization. In the
future, a more interactive and active set up would be more
practical and compelling. For instance, by integrating activity
recognition modules, our system should be able to perceive,
recognize, and extract richer semantic information from the
observed visual input, thereby providing more subtle (false-
)belief applications. Communication, gazes, and gestures
are also crucial in intention expression and perception in
collaborative interactions. By incorporating these essential
ingredients and taking advantage of the flexibility and gen-
eralization of the model, our system should be able to go
from the current passive query to active response to assist
agents in real-time.
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